Back to Search Start Over

Analytical Solution of the Bending Problem for Rectangular Orthotropic Plates with a Variable in-Plane Stiffness

Authors :
X. J. Cao
Guo-jun Nie
Zheng Zhong
T. C. Yu
F. Y. Chu
Source :
Mechanics of Composite Materials. 57:115-124
Publication Year :
2021
Publisher :
Springer Science and Business Media LLC, 2021.

Abstract

The analytical solution of the bending problem for a clamped rectangular plate with a variable in-plane stiffness is found by using the method of superposition. The flexural rigidity of the plate varies across its width according to an exponential function. First, the analytical solution for a simply supported rectangular plate with a variable in-plane stiffness is obtained, and then the bending problem for the plate clamped at its four edges is solved analytically by the superposition of one simply supported plate under the transverse load and two simply supported plates under pure bending. The influence of the variable in-plane stiffness, aspect ratio, and different boundary conditions on the deflection and bending moment is studied by numerical examples. The analytical solution presented here may be helpful for the design of rectangular plates with a variable in-plane stiffness.

Details

ISSN :
15738922 and 01915665
Volume :
57
Database :
OpenAIRE
Journal :
Mechanics of Composite Materials
Accession number :
edsair.doi...........c722f78ed3b3021f8d4cc219bccb9ec4
Full Text :
https://doi.org/10.1007/s11029-021-09938-1