Back to Search Start Over

Cell-type specific circadian bioluminescence rhythms in Dbp reporter mice

Authors :
Blanca Martin-Burgos
David R. Weaver
Eleanor McCartney
Lauren A. Garbutt
Alec J. Davidson
Robert Dallmann
Tanya L. Leise
Mary E. Harrington
Michael H. Brodsky
Penny C. Molyneux
Vincent van der Vinne
Adam C. Stowie
Ciearra B. Smith
Publication Year :
2021
Publisher :
Cold Spring Harbor Laboratory, 2021.

Abstract

Circadian rhythms are endogenously generated physiological and molecular rhythms with a cycle length of about 24 h. Bioluminescent reporters have been exceptionally useful for studying circadian rhythms in numerous species. Here, we report development of a reporter mouse generated by modification of a widely expressed and highly rhythmic gene encoding D-site albumin promoter binding protein (Dbp). In this line of mice, firefly luciferase is expressed from the Dbp locus in a Cre-recombinase-dependent manner, allowing assessment of bioluminescence rhythms in specific cellular populations. A mouse line in which luciferase expression was Cre-independent was also generated. The Dbp reporter alleles do not alter Dbp gene expression rhythms in liver or circadian locomotor activity rhythms. In vivo and ex vivo studies show the utility of the reporter alleles for monitoring rhythmicity. Our studies reveal cell-type specific characteristics of rhythms among neuronal populations within the suprachiasmatic nuclei ex vivo. In vivo studies show Dbp-driven bioluminescence rhythms in the liver of Albumin-Cre;DbpKI/+ “liver reporter” mice. After a shift of the lighting schedule, locomotor activity achieved the proper phase relationship with the new lighting cycle more rapidly than hepatic bioluminescence did. As previously shown, restricting food access to the daytime altered the phase of hepatic rhythmicity. Our model allowed assessment of the rate of recovery from misalignment once animals were provided with food ad libitum. These studies confirm the previously demonstrated circadian misalignment following environmental perturbations and reveal the utility of this model for minimally invasive, longitudinal monitoring of rhythmicity from specific mouse tissues.

Details

Database :
OpenAIRE
Accession number :
edsair.doi...........c667a1690a55df0bd7568404628c5f6f