Back to Search Start Over

Global confinement scaling for high-density plasmas in the Large Helical Device

Authors :
J Miyazawa
H Yamada
S Murakami
H Funaba
S Inagaki
N Ohyabu
A Komori
O Motojima
LHD experimental group
Source :
Plasma Physics and Controlled Fusion. 48:325-337
Publication Year :
2006
Publisher :
IOP Publishing, 2006.

Abstract

Density and power scan experiments have been carried out at various magnetic field strengths on the Large Helical Device (LHD), to investigate the temperature and magnetic field dependences of the thermal diffusivity. In the moderate density regime, the thermal diffusivity shows gyro-Bohm-like parameter dependences. In the high-density and low-temperature regime, on the other hand, the thermal diffusivity increases with the square root of the local electron temperature and decreases with a 1.2 power of the magnetic field strength. The turning point temperature where the weak temperature dependence changes to the gyro-Bohm type is also found to increase with a 0.8 power of the magnetic field strength. Based on the experimental results, dimensionally correct scalings for the energy confinement time, τE, and the plasma stored energy for the high-density LHD plasmas have been derived. Compared with the gyro-Bohm model (τE ∝ (n/P)3/5, where n and P denote the density and the heating power, respectively) and the international stellarator scaling 1995 (τE ∝ n0.51P−0.59), our scaling has a weaker positive dependence on the density together with the mitigated power degradation as τE ∝ (n/P)1/3, owing to the weak temperature dependence of the thermal diffusivity.

Details

ISSN :
13616587 and 07413335
Volume :
48
Database :
OpenAIRE
Journal :
Plasma Physics and Controlled Fusion
Accession number :
edsair.doi...........c6423511dbcb5138c53db6574a37fde1
Full Text :
https://doi.org/10.1088/0741-3335/48/2/010