Back to Search
Start Over
Hypergraph characterizations of copositive tensors
- Source :
- Frontiers of Mathematics in China. 16:815-824
- Publication Year :
- 2021
- Publisher :
- Springer Science and Business Media LLC, 2021.
-
Abstract
- A real symmetric tensor $${\mathscr{A}} = ({a_{{i_1} \ldots {i_m}}}) \in {\mathbb{R}^{[m,n]}}$$ is copositive (resp., strictly copositive) if $${\mathscr{A}}\;{x^m} \geqslant 0$$ (resp., $${\mathscr{A}}\;{x^m} > 0$$ ) for any nonzero nonnegative vector x ∈ ℝn. By using the associated hypergraph of $${\mathscr{A}}$$ , we give necessary and sufficient conditions for the copositivity of $${\mathscr{A}}$$ . For a real symmetric tensor $${\mathscr{A}}$$ satisfying the associated negative hypergraph $${H_ - }({\mathscr{A}})$$ and associated positive hypergraph $${H_ + }({\mathscr{A}})$$ are edge disjoint subhypergraphs of a supertree or cored hypergraph, we derive criteria for the copositivity of $${\mathscr{A}}$$ . We also use copositive tensors to study the positivity of tensor systems.
- Subjects :
- Mathematics::Functional Analysis
Hypergraph
010102 general mathematics
Mathematics::Optimization and Control
Mathematics::General Topology
010103 numerical & computational mathematics
Disjoint sets
Mathematics::Spectral Theory
01 natural sciences
Combinatorics
Mathematics (miscellaneous)
Symmetric tensor
Tensor
0101 mathematics
Mathematics::Representation Theory
Mathematics
Subjects
Details
- ISSN :
- 16733576 and 16733452
- Volume :
- 16
- Database :
- OpenAIRE
- Journal :
- Frontiers of Mathematics in China
- Accession number :
- edsair.doi...........c57961e1b582713dfeeac6447d0f99b1