Back to Search
Start Over
Improvement of the hole mobility of SnO epitaxial films grown by pulsed laser deposition
Improvement of the hole mobility of SnO epitaxial films grown by pulsed laser deposition
- Source :
- Journal of Materials Chemistry C. 7:6332-6336
- Publication Year :
- 2019
- Publisher :
- Royal Society of Chemistry (RSC), 2019.
-
Abstract
- Stannous oxide, SnO, is a promising material for practical applications as a p-type transparent oxide semiconductor. However, in its thin-film form, the reported semiconducting properties of SnO are unfortunately insufficient for the development of oxide devices. In this work, we report that the hole mobility of SnO epitaxial films grown by pulsed laser deposition can be improved by reducing the growth temperature. The hole mobility is estimated to be approximately 10 cm2 V−1 s−1 at room temperature, which is nearly four times higher than the one originally reported for epitaxial films fabricated at the conventional growth temperature. In addition, the observed carrier density of the fabricated SnO films is slightly lower compared with that of the ones fabricated at the conventional growth temperature. This suggests that the Sn vacancy formation as a hole carrier dopant is suppressed by the reduction in the growth temperature. This result offers the key for the improvement of the performance of oxide thin-film devices.
- Subjects :
- Electron mobility
Materials science
Dopant
business.industry
Oxide
02 engineering and technology
General Chemistry
010402 general chemistry
021001 nanoscience & nanotechnology
Epitaxy
01 natural sciences
0104 chemical sciences
Pulsed laser deposition
STANNOUS OXIDE
chemistry.chemical_compound
Oxide semiconductor
chemistry
Vacancy defect
Materials Chemistry
Optoelectronics
0210 nano-technology
business
Subjects
Details
- ISSN :
- 20507534 and 20507526
- Volume :
- 7
- Database :
- OpenAIRE
- Journal :
- Journal of Materials Chemistry C
- Accession number :
- edsair.doi...........c534d7830ed1046ac263b0d58b0b30a2
- Full Text :
- https://doi.org/10.1039/c9tc01297d