Back to Search Start Over

The univalence of an integral

Authors :
W. M. Causey
Source :
Proceedings of the American Mathematical Society. 27:500-502
Publication Year :
1971
Publisher :
American Mathematical Society (AMS), 1971.

Abstract

Let f ( z ) f(z) be a normalized function, analytic and univalent in the open unit disc. It is shown that if g ( z ) = ∫ 0 z ( f ( t ) / t ) α d t g(z) = \int _0^z {{{(f(t)/t)}^\alpha }dt} , then g g is univalent in the open unit disc if α \alpha is a complex number satisfying 0 ≦ | α | ≦ ( √ 2 − 1 ) / 4 0 \leqq |\alpha | \leqq (\surd 2 - 1)/4 .

Details

ISSN :
10886826 and 00029939
Volume :
27
Database :
OpenAIRE
Journal :
Proceedings of the American Mathematical Society
Accession number :
edsair.doi...........c47be7eda2e888db8abdc85293d67dc5