Back to Search
Start Over
The univalence of an integral
- Source :
- Proceedings of the American Mathematical Society. 27:500-502
- Publication Year :
- 1971
- Publisher :
- American Mathematical Society (AMS), 1971.
-
Abstract
- Let f ( z ) f(z) be a normalized function, analytic and univalent in the open unit disc. It is shown that if g ( z ) = ∫ 0 z ( f ( t ) / t ) α d t g(z) = \int _0^z {{{(f(t)/t)}^\alpha }dt} , then g g is univalent in the open unit disc if α \alpha is a complex number satisfying 0 ≦ | α | ≦ ( √ 2 − 1 ) / 4 0 \leqq |\alpha | \leqq (\surd 2 - 1)/4 .
Details
- ISSN :
- 10886826 and 00029939
- Volume :
- 27
- Database :
- OpenAIRE
- Journal :
- Proceedings of the American Mathematical Society
- Accession number :
- edsair.doi...........c47be7eda2e888db8abdc85293d67dc5