Back to Search
Start Over
A Schwarz lemma for complete Riemannian manifolds
- Source :
- Bulletin of the Australian Mathematical Society. 55:513-515
- Publication Year :
- 1997
- Publisher :
- Cambridge University Press (CUP), 1997.
-
Abstract
- We prove a Schwarz Lemma for conformal mappings between two complete Riemannian manifolds when the domain manifold has Ricci curvature bounded below in terms of its distance function. This gives a partial result to a conjecture of Chua.
- Subjects :
- Pure mathematics
Curvature of Riemannian manifolds
Schwarz lemma
General Mathematics
Mathematical analysis
Riemannian geometry
symbols.namesake
Ricci-flat manifold
symbols
Mathematics::Differential Geometry
Sectional curvature
Exponential map (Riemannian geometry)
Ricci curvature
Mathematics
Scalar curvature
Subjects
Details
- ISSN :
- 17551633 and 00049727
- Volume :
- 55
- Database :
- OpenAIRE
- Journal :
- Bulletin of the Australian Mathematical Society
- Accession number :
- edsair.doi...........c404593bafd0217e200d9008d983e0ea
- Full Text :
- https://doi.org/10.1017/s000497270003416x