Back to Search Start Over

Spectral property of the planar self-affine measures with three-element digit sets

Authors :
Ming-Liang Chen
Jing-Cheng Liu
Juan Su
Source :
Forum Mathematicum. 32:673-681
Publication Year :
2020
Publisher :
Walter de Gruyter GmbH, 2020.

Abstract

Let the self-affine measure μ M , D {\mu_{M,D}} be generated by an expanding real matrix M = diag ⁡ ( ρ 1 - 1 , ρ 2 - 1 ) {M=\operatorname{diag}(\rho_{1}^{-1},\rho_{2}^{-1})} and an integer digit set D = { ( 0 , 0 ) t , ( α 1 , α 2 ) t , ( β 1 , β 2 ) t } {D=\{(0,0)^{t},(\alpha_{1},\alpha_{2})^{t},(\beta_{1},\beta_{2})^{t}\}} with α 1 ⁢ β 2 - α 2 ⁢ β 1 ≠ 0 {\alpha_{1}\beta_{2}-\alpha_{2}\beta_{1}\neq 0} . In this paper, the sufficient and necessary conditions for L 2 ⁢ ( μ M , D ) {L^{2}(\mu_{M,D})} to contain an infinite orthogonal set of exponential functions are given.

Details

ISSN :
14355337 and 09337741
Volume :
32
Database :
OpenAIRE
Journal :
Forum Mathematicum
Accession number :
edsair.doi...........c362bbe13df7681d47284fe2e1a0d70c