Back to Search Start Over

Yield Enhancement by Bad-Die Recycling and Stacking With Though-Silicon Vias

Authors :
Cheng-Wen Wu
Ding-Ming Kwai
Yung-Fa Chou
Source :
IEEE Transactions on Very Large Scale Integration (VLSI) Systems. 19:1346-1356
Publication Year :
2011
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2011.

Abstract

3-D integration provides a means to overcome the difficulties in design and manufacturing of system-on-chip (SOC) and memory products. Introducing a short vertical interconnect, called through-silicon via (TSV), makes it feasible to repair and recycle bad dies by stacking. We propose a method to accomplish this using a dual-TSV hardwired switch (DTHS) in which the via-hole location is programmable. With the DTHS, we activate a spare and establish inter-die routing. The spare is nothing but a good part in another bad die. To be 3-D reparable, the design is partitioned into disjoint parts. The effort for the modification is minor in view of that a typical SOC is readily composed of modules with predefined functions and supply voltages. The DTHS is used: 1) to shut off power connections of both failed and unused parts; 2) to disconnect their signal paths; and 3) to redirect them to the selected good parts in the stacked dies. Despite the speed is degraded due to the extra load incurred by the DTHS, our simulation shows that the increase in delay time can be limited below 100 ps with an over-designed buffer which occupies 0.8% of the area of a 30 μm TSV, using a 65-nm CMOS process. The performance degradation turns out to be a necessary evil, since the increased height of the die stack leads to a thermal conductivity poorer than its 2-D counterpart. The 3-D patch die helps to shorten time-to-market and turn the irreparable dies profitable.

Details

ISSN :
15579999 and 10638210
Volume :
19
Database :
OpenAIRE
Journal :
IEEE Transactions on Very Large Scale Integration (VLSI) Systems
Accession number :
edsair.doi...........c2bfa04aa7b4314927156649120f5d38