Back to Search
Start Over
COVID-19 vaccines dampen genomic diversity of SARS-CoV-2: Unvaccinated patients exhibit more antigenic mutational variance
- Publication Year :
- 2021
- Publisher :
- Cold Spring Harbor Laboratory, 2021.
-
Abstract
- Variants of SARS-CoV-2 are evolving under a combination of immune selective pressure in infected hosts and natural genetic drift, raising a global alarm regarding the durability of COVID-19 vaccines. Here, we conducted longitudinal analysis over 1.8 million SARS-CoV-2 genomes from 183 countries or territories to capture vaccination-associated viral evolutionary patterns. To augment this macroscale analysis, we performed viral genome sequencing in 23 vaccine breakthrough COVID-19 patients and 30 unvaccinated COVID-19 patients for whom we also conducted machine-augmented curation of the electronic health records (EHRs). Strikingly, we find the diversity of the SARS-CoV-2 lineages is declining at the country-level with increased rate of mass vaccination (n = 25 countries, mean correlation coefficient = −0.72, S.D. = 0.20). Given that the COVID-19 vaccines leverage B-cell and T-cell epitopes, analysis of mutation rates shows neutralizing B-cell epitopes to be particularly more mutated than comparable amino acid clusters (4.3-fold, p < 0.001). Prospective validation of these macroscale evolutionary patterns using clinically annotated SARS-CoV-2 whole genome sequences confirms that vaccine breakthrough patients indeed harbor viruses with significantly lower diversity in known B cell epitopes compared to unvaccinated COVID-19 patients (2.3-fold, 95% C.I. 1.4-3.7). Incidentally, in these study cohorts, vaccinated breakthrough patients also displayed fewer COVID-associated complications and pre-existing conditions relative to unvaccinated COVID-19 patients. This study presents the first known evidence that COVID-19 vaccines are fundamentally restricting the evolutionary and antigenic escape pathways accessible to SARS-CoV-2. The societal benefit of mass vaccination may consequently go far beyond the widely reported mitigation of SARS-CoV-2 infection risk and amelioration of community transmission, to include stemming of rampant viral evolution.
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi...........c2bbf00ec663ea6ac06a7c4c74b92969