Back to Search Start Over

Interaction between shock wave and solid particles: Establishing a model for the change of cloud's expansion rate

Authors :
Gao Kai
Lifeng Xie
Rhoda Afriyie Mensah
Bin Li
Jing Zhang
Dan Zhang
Xinyu Xiong
Source :
Powder Technology. 381:632-641
Publication Year :
2021
Publisher :
Elsevier BV, 2021.

Abstract

This study seeks to discover the change of cloud's expansion rate with self-designed shock wave dispersion system. Transmission, diffraction and reflection could be observed intuitively when shock waves passed through solid particle layers. Results show that the longitudinal motion of particle group greatly influenced cloud's volume growth, thus, the maximum rate of longitudinal expansion of clouds was almost twice that of lateral expansion. The cloud growth rate and volume acceleration increased with smaller particle size, thicker particle layer and stronger shock wave intensity. Also, the expansion rate initially had a drastic decrease, small particles made clouds volume acceleration unstable and experienced a subsequent swift rise. Shock wave intensity influenced diffraction and reflection formation waves as well as the cloud's shape and expansion rate. This study therefore proposed a controlling model for cloud's expansion rate, which could illustrate differences between acceleration stage of dynamic action and deceleration stage of resistance action.

Details

ISSN :
00325910
Volume :
381
Database :
OpenAIRE
Journal :
Powder Technology
Accession number :
edsair.doi...........c280b54281a73ceff7f7c8a52dc1ff14