Back to Search Start Over

Towards climate simulations at cloud-resolving scales

Authors :
Christoph Schär
Cathy Hohenegger
Peter Brockhaus
Source :
Meteorologische Zeitschrift. 17:383-394
Publication Year :
2008
Publisher :
Schweizerbart, 2008.

Abstract

This study explores the potential added-value of applying cloud-resolving resolution to climate simulations. A month-long (July 2006) integration is performed with the CCLM on a convection-resolving grid of 2.2-km (0.02°) mesh size spanning the whole Alpine region. The initial and lateral boundary conditions stem from a coarser-resolution 25-km (0.22°) CCLM integration. Comparison to observations indicates that the cloud-resolving simulation is able to capture the overall precipitation distribution and evolution. With respect to its driving lower-resolution integration, the cloud-resolving resolution yields a more accurate spatial localization of the precipitation maxima, reduces the cold bias, and especially reproduces a better timing of the convective diurnal cycle. The explicit resolution delays the onset of convective precipitation by about 2 h, shifts the time of peak precipitation by a similar period, and slows down the decay of convective activity in the afternoon. In return, the integration shows a tendency to underestimate the afternoon convective rainfalls, particularly under weak synoptic and/or orographic forcing. This latter effect might be improved by modifying the treatment of subgrid-scale clouds in the model.

Details

ISSN :
09412948
Volume :
17
Database :
OpenAIRE
Journal :
Meteorologische Zeitschrift
Accession number :
edsair.doi...........c27077ee432ffcd48fe56f39a687371c
Full Text :
https://doi.org/10.1127/0941-2948/2008/0303