Back to Search Start Over

p-Divisibility of the Number of Solutions of xp = 1 in a Symmetric Group

Authors :
Hideki Ishihara
Yugen Takegahara
Tomoyuki Yoshida
Hiroyuki Ochiai
Source :
Annals of Combinatorics. 5:197-210
Publication Year :
2001
Publisher :
Springer Science and Business Media LLC, 2001.

Abstract

For a prime p and for the number a(n) of solutions of xp = 1 in the symmetric group on n letters, ordp\( (a(n)) \geq [n/p] - [n/p^2] \), and especially, ordp\( (a(n)) = [n/p] - [n/p^2] \) provided \( n \equiv 0 \) mod p2. Let r be an integer with \( 1 \leq r \leq p^2 - 1 \). If ordp\( (a(r)) \leq [r/p] + 1 \), then, for each positive integer m, ordp\( (a(mp^2 + r)) = m(p-1)+ ord_p (a(r)) \). Assume that ordp\( (a(r)) = [r/p] + 2 \). If \( a(p^2 + r) \equiv -p^{p-1} a(r) mod \quad p^{p+[r/p]+2} \), then ordp\( (a(mp^2 + r)) = m(p-1) + [r/p] + 2 \); otherwise, there exists a p-adic integer b such tha ordp\( (a(mp^2 + r)) = m(p-1) + [r/p] + 2 + ord_p(m-b) \).

Details

ISSN :
02180006
Volume :
5
Database :
OpenAIRE
Journal :
Annals of Combinatorics
Accession number :
edsair.doi...........c255f5b989f686c002b6b6d72538aca2
Full Text :
https://doi.org/10.1007/pl00001300