Back to Search
Start Over
Non-autonomous Schrödinger-Poisson system in <tex-math id='M1'>\begin{document} $\mathbb{R}^{3}$\end{document}</tex-math>
- Source :
- Discrete & Continuous Dynamical Systems - A. 38:1889-1933
- Publication Year :
- 2018
- Publisher :
- American Institute of Mathematical Sciences (AIMS), 2018.
-
Abstract
- We study the existence of positive solutions for the non-autonomous Schrodinger-Poisson system: \begin{document}$\left\{ {\begin{array}{*{20}{l}} { - \Delta u + u + \lambda K\left( x \right)\phi u = a\left( x \right){{\left| u \right|}^{p - 2}}u}&{{\text{in }}{\mathbb{R}^3},} \\ { - \Delta \phi = K\left( x \right){u^2}}&{{\text{in }}{\mathbb{R}^3},} \end{array}} \right.$ \end{document} where \begin{document} $\lambda >0$\end{document} , \begin{document} $2 and both \begin{document} $K\left( x\right) $\end{document} and \begin{document} $a\left( x\right) $\end{document} are nonnegative functions in \begin{document} $\mathbb{R}^{3}$\end{document} , which satisfy the given conditions, but not require any symmetry property. Assuming that \begin{document} $% \lim_{\left\vert x\right\vert \rightarrow \infty }K\left( x\right) = K_{\infty }\geq 0$\end{document} and \begin{document} $\lim_{\left\vert x\right\vert \rightarrow \infty }a\left( x\right) = a_{\infty }>0$\end{document} , we explore the existence of positive solutions, depending on the parameters \begin{document} $\lambda$\end{document} and \begin{document} $p$\end{document} . More importantly, we establish the existence of ground state solutions in the case of \begin{document} $3.18 \approx \frac{{1 + \sqrt {73} }}{3} .
- Subjects :
- Physics
Computer Science::Information Retrieval
Applied Mathematics
010102 general mathematics
01 natural sciences
Sobolev inequality
010101 applied mathematics
Combinatorics
symbols.namesake
symbols
Discrete Mathematics and Combinatorics
0101 mathematics
Symmetry (geometry)
Poisson system
Analysis
Schrödinger's cat
Subjects
Details
- ISSN :
- 15535231
- Volume :
- 38
- Database :
- OpenAIRE
- Journal :
- Discrete & Continuous Dynamical Systems - A
- Accession number :
- edsair.doi...........c1e79054bf892f210c5a4b5b05dc61c5
- Full Text :
- https://doi.org/10.3934/dcds.2018077