Back to Search Start Over

Non-autonomous Schrödinger-Poisson system in <tex-math id='M1'>\begin{document} $\mathbb{R}^{3}$\end{document}</tex-math>

Authors :
Zhaosheng Feng
Juntao Sun
Tsung-fang Wu
Source :
Discrete & Continuous Dynamical Systems - A. 38:1889-1933
Publication Year :
2018
Publisher :
American Institute of Mathematical Sciences (AIMS), 2018.

Abstract

We study the existence of positive solutions for the non-autonomous Schrodinger-Poisson system: \begin{document}$\left\{ {\begin{array}{*{20}{l}} { - \Delta u + u + \lambda K\left( x \right)\phi u = a\left( x \right){{\left| u \right|}^{p - 2}}u}&amp;{{\text{in }}{\mathbb{R}^3},} \\ { - \Delta \phi = K\left( x \right){u^2}}&amp;{{\text{in }}{\mathbb{R}^3},} \end{array}} \right.$ \end{document} where \begin{document} $\lambda &gt;0$\end{document} , \begin{document} $2 and both \begin{document} $K\left( x\right) $\end{document} and \begin{document} $a\left( x\right) $\end{document} are nonnegative functions in \begin{document} $\mathbb{R}^{3}$\end{document} , which satisfy the given conditions, but not require any symmetry property. Assuming that \begin{document} $% \lim_{\left\vert x\right\vert \rightarrow \infty }K\left( x\right) = K_{\infty }\geq 0$\end{document} and \begin{document} $\lim_{\left\vert x\right\vert \rightarrow \infty }a\left( x\right) = a_{\infty }&gt;0$\end{document} , we explore the existence of positive solutions, depending on the parameters \begin{document} $\lambda$\end{document} and \begin{document} $p$\end{document} . More importantly, we establish the existence of ground state solutions in the case of \begin{document} $3.18 \approx \frac{{1 + \sqrt {73} }}{3} .

Details

ISSN :
15535231
Volume :
38
Database :
OpenAIRE
Journal :
Discrete & Continuous Dynamical Systems - A
Accession number :
edsair.doi...........c1e79054bf892f210c5a4b5b05dc61c5
Full Text :
https://doi.org/10.3934/dcds.2018077