Back to Search
Start Over
Alteration of intramolecular electronic transition via deboronation of carbazole-based o-carboranyl compound and intriguing ‘turn-on’ emissive variation
- Source :
- RSC Advances. 11:24057-24064
- Publication Year :
- 2021
- Publisher :
- Royal Society of Chemistry (RSC), 2021.
-
Abstract
- The conversion of closo-o-carborane–containing compounds to the nido-o-species via deboronation causes photophysical changes that could be used for sensing applications. 9-Methyl-9H-carbazole–based closo- (closo-Cz) and nido-o-carboranyl (nido-Cz) compounds were prepared and fully characterised by multinuclear NMR spectroscopy and elemental analysis, and the solid-state molecular structure of closo-Cz was analysed by X-ray crystallography. Although the closo-compound exhibited an emissive pattern centred at λem = ca. 530 nm in the rigid state only (in THF at 77 K and as a film), nido-Cz demonstrated intense emission in the near-UV region (λem = ca. 380 nm) in both solution and film states at 298 K. The positive solvatochromic effect of nido-Cz and the results of theoretical calculations for both the o-carboranyl compounds supported that these emissive features originate from intramolecular charge transfer (ICT) corresponding to the o-carborane. Furthermore, the calculations verified that the electronic role of the o-carboranyl unit changed from acceptor to donor upon deboronation from closo-Cz to nido-Cz. Investigations of the radiative decay mechanisms of closo-Cz and nido-Cz according to their quantum efficiencies (Φem) and decay lifetimes (τobs) suggested that the ICT-based radiative decays of closo-Cz and nido-Cz readily occur in the film (solid) and solution state, respectively. These observations implied that the emission of closo-Cz in the solution state could be drastically enhanced by deboronation to nido-Cz upon exposure to an increasing concentration of fluoride anions. Indeed, turn-on emissive features in an aqueous solution were observed upon deboronation, strongly suggesting the potential of closo-Cz as a turn-on and visually detectable chemodosimeter for fluoride ion sensing.
- Subjects :
- Aqueous solution
Materials science
010405 organic chemistry
Carbazole
General Chemical Engineering
Solvatochromism
General Chemistry
Nuclear magnetic resonance spectroscopy
010402 general chemistry
Photochemistry
01 natural sciences
Acceptor
Molecular electronic transition
0104 chemical sciences
chemistry.chemical_compound
chemistry
Intramolecular force
Molecule
Subjects
Details
- ISSN :
- 20462069
- Volume :
- 11
- Database :
- OpenAIRE
- Journal :
- RSC Advances
- Accession number :
- edsair.doi...........c1d2ff3f4ea5382d2fbf103f8c22a307