Back to Search Start Over

Cytotoxicity and transcriptome changes triggered by CuInS2/ZnS quantum dots in human glial cells

Authors :
Dongmeng Liu
Xiaomei Wang
Yajing Chen
Wenyi Zou
Wencan Lu
Tingting Chen
Guimiao Lin
Dahui Xue
Zhiwen Yang
Li Li
Source :
NeuroToxicology. 88:134-143
Publication Year :
2022
Publisher :
Elsevier BV, 2022.

Abstract

As a newly developed cadmium-free quantum dot (QD), CuInS2/ZnS has great application potential in many fields, but its biological safety has not been fully understood. In this study, the in vitro toxicity of CuInS2/ZnS QDs on U87 human glioma cell line was explored. The cells were treated with different concentrations of QDs (12.5, 25, 50 and 100 μg/mL), and the uptake of QDs by the U87 cells was detected by fluorescence imaging and flow cytometry. The cell viability was observed by MTT assay, and the gene expression profile was analyzed by transcriptome sequencing. These results showed that QDs could enter the cells and mainly located in the cytoplasm. The uptake rate was over 90 % when the concentration of QDs reached 25 μg/mL. The cell viability (50 and 100 μg/mL) increased at 24 h (P < 0.05), but no significant difference after 48 h and 72 h treatment. The results of differential transcription showed that coding RNA accounted for the largest proportion (62.15 %), followed by long non-coding RNA (18.65 %). Total 220 genes were up-regulated and 1515 genes were down-regulated, and significantly altered gene functions included nucleosome, chromosome-DNA binding, and chromosome assembly. In conclusion, CuInS2/ZnS QDs could enter U87 cells, did not reduce the cell viability, but would obviously alter the gene expression profile. These findings provide valuable information for a proper understanding of the toxicity risk of CuInS2/ZnS QD and promote the rational utilization of QDs in the future.

Details

ISSN :
0161813X
Volume :
88
Database :
OpenAIRE
Journal :
NeuroToxicology
Accession number :
edsair.doi...........c103063a551c3b6aa2980b67b71513cb