Back to Search Start Over

The influence of isolated and penta-hydrated Zn2+ on some of the intramolecular proton-transfer processes of thymine: a quantum chemical study

Authors :
Ying Han
Ping Zhang
Qi Kang
Dazhong Shen
Dejie Li
Zhihua Li
Huijuan Li
Source :
RSC Advances. 8:11021-11026
Publication Year :
2018
Publisher :
Royal Society of Chemistry (RSC), 2018.

Abstract

Zinc cation (Zn2+) plays an important role in the chemistry of DNA base pairs. In this work, the influence of isolated and penta-hydrated Zn2+ on some of the intramolecular proton-transfer processes of thymine (T) is investigated by the density functional theory method. It is shown that the calculated binding energies between Zn2+ and T are exothermic in vacuum. Compared to T, Zn2+ increases the stability of tautomer T′ by 28.7 kcal mol−1, promoting the intramolecular proton transfer of T. But in a micro-water environment, the attachment processes of Zn2+ to T hydrates, penta-hydrated Zn2+ to T, and penta-hydrated Zn2+ to T hydrates lead to the rearrangement of molecules and the redistribution of charges. The conventional T is still the most stable form and the influence of Zn2+ is much reduced and the proton transfer is thermodynamically unfavored. The detailed characterization is helpful to understand the genotoxicity of zinc ions.

Details

ISSN :
20462069
Volume :
8
Database :
OpenAIRE
Journal :
RSC Advances
Accession number :
edsair.doi...........c0e2186a233ebb64d6fe471c62e2995a