Back to Search Start Over

Solidification microstructure of Cr4Mo4V steel forged in the semi-solid state

Authors :
Guo Yifeng
LI Dianzhong
Sun Mingyue
Liu Weifeng
Cao Yanfei
Xu Bin
Source :
Journal of Materials Science & Technology. 38:170-182
Publication Year :
2020
Publisher :
Elsevier BV, 2020.

Abstract

Semi-solid forging of iron-based alloys during solidification has unique characteristics distinct from those of the classical hot forging. With the aim of acquiring precise knowledge concerning the microstructural evolution of bearing steel Cr4Mo4V in this process, a series of semi-solid forging experiments were carried out in which samples were wrapped in a designed pure iron sheath. The effects of forging temperature and forging reduction on the grain morphology and liquid flow behavior were investigated, respectively. By forging solidifying metal (FSM), bulky primary dendrites were broken and spheroidal grains with an average shape factor of 0.87 were obtained at 1360 °C. With the decreasing forging temperature to 1340 °C, the microstructural homogeneity can be improved. On the other hand, it shows that a higher forging reduction (50%) is essential for the spheroidization of grains and elimination of liquid segregation. Those microstructural characteristics are related to different motion mechanisms of solid and liquid phases at different forging temperatures. Additionally, the effect of semi-solid forging on the eutectic carbides was also investigated, and the results demonstrate that the higher diffusion capacity and less liquid segregation jointly lower the large eutectic carbides and consequently cause its uniform distribution during FSM.

Details

ISSN :
10050302
Volume :
38
Database :
OpenAIRE
Journal :
Journal of Materials Science & Technology
Accession number :
edsair.doi...........c0c855a0497c6ff5da3e8d898c424b32