Back to Search
Start Over
Linking emissions of fossil fuel CO2and other anthropogenic trace gases using atmospheric14CO2
- Source :
- Journal of Geophysical Research: Atmospheres. 117
- Publication Year :
- 2012
- Publisher :
- American Geophysical Union (AGU), 2012.
-
Abstract
- [1] Atmospheric CO2 gradients are usually dominated by the signal from net terrestrial biological fluxes, despite the fact that fossil fuel combustion fluxes are larger in the annual mean. Here, we use a six year long series of 14CO2 and CO2 measurements obtained from vertical profiles at two northeast U.S. aircraft sampling sites to partition lower troposphere CO2 enhancements (and depletions) into terrestrial biological and fossil fuel components (Cbio and Cff). Mean Cff is 1.5 ppm, and 2.4 ppm when we consider only planetary boundary layer samples. However, we find that the contribution of Cbio to CO2 enhancements is large throughout the year, and averages 60% in winter. Paired observations of Cff and the lower troposphere enhancements (Δgas) of 22 other anthropogenic gases (CH4, CO, halo- and hydrocarbons and others) measured in the same samples are used to determine apparent emission ratios for each gas. We then scale these ratios by the well known U.S. fossil fuel CO2 emissions to provide observationally based estimates of national emissions for each gas and compare these to “bottom up” estimates from inventories. Correlations of Δgas with Cff for almost all gases are statistically significant with median r2for winter, summer and the entire year of 0.59, 0.45, and 0.42, respectively. Many gases exhibit statistically significant winter:summer differences in ratios that indicate seasonality of emissions or chemical destruction. The variability of ratios in a given season is not readily attributable to meteorological or geographic variables and instead most likely reflects real, short-term spatiotemporal variability of emissions.
- Subjects :
- Atmospheric Science
Planetary boundary layer
Soil Science
Aquatic Science
Oceanography
Atmospheric sciences
law.invention
Troposphere
chemistry.chemical_compound
Geochemistry and Petrology
law
Earth and Planetary Sciences (miscellaneous)
medicine
Radiocarbon dating
Earth-Surface Processes
Water Science and Technology
Ecology
business.industry
Fossil fuel
Paleontology
Sampling (statistics)
Forestry
Seasonality
medicine.disease
Trace gas
Geophysics
chemistry
Space and Planetary Science
Climatology
Carbon dioxide
Environmental science
business
Subjects
Details
- ISSN :
- 01480227
- Volume :
- 117
- Database :
- OpenAIRE
- Journal :
- Journal of Geophysical Research: Atmospheres
- Accession number :
- edsair.doi...........c08936b3d3caa45e62186941a2d0ac7d
- Full Text :
- https://doi.org/10.1029/2011jd017048