Back to Search Start Over

The protective effect of sickle cell haemoglobin against severe malaria depends on parasite genotype

Authors :
Jim Stalker
Ellen M. Leffler
Kalifa Bojang
Kevin Marsh
Fatoumatta Sisay-Joof
Norbert Peshu
Dominic P. Kwiatkowski
Sónia Gonçalves
Carolyne M. Ndila
Eleanor Drury
Umberto D'Alessandro
Cristina V. Ariani
Roberto Amato
Giorgio Sirugo
Richard D. Pearson
Anna E. Jeffreys
Thuy Nguyen
Thomas N. Williams
Alexander Macharia
Gavin Band
Kate Rowlands
Christina Hubbart
Muminatou Jallow
Kirk A. Rockett
David J. Conway
Publication Year :
2021
Publisher :
Cold Spring Harbor Laboratory, 2021.

Abstract

Host genetic factors can confer resistance against malaria, raising the question of whether this has led to evolutionary adaptation of parasite populations. In this study we investigated the correlation between host and parasite genetic variation in 4,171 Gambian and Kenya children ascertained with severe malaria due to Plasmodium falciparum. We identified a strong association between sickle haemoglobin (HbS) in the host and variation in three regions of the parasite genome, including nonsynonymous variants in the acyl-CoA synthetase family member PfACS8 on chromosome 2, in a second region of chromosome 2, and in a region containing structural variation on chromosome 11. The HbS-associated parasite alleles are in strong linkage disequilibrium and have frequencies which covary with the frequency of HbS across populations, in particular being much more common in Africa than other parts of the world. The estimated protective effect of HbS against severe malaria, as determined by comparison of cases with population controls, varies greatly according to the parasite genotype at these three loci. These findings open up a new avenue of enquiry into the biological and epidemiological significance of the HbS-associated polymorphisms in the parasite genome, and the evolutionary forces that have led to their high frequency and strong linkage disequilibrium in African P. falciparum populations.

Details

Database :
OpenAIRE
Accession number :
edsair.doi...........c06247658217d4126de9be91ea6739dd
Full Text :
https://doi.org/10.1101/2021.03.30.437659