Back to Search Start Over

Bubble Behavior at an Uneven Wall

Authors :
H. Shmueli
Ruth Letan
Gennady Ziskind
Source :
Volume 2: Heat Transfer in Multiphase Systems; Gas Turbine Heat Transfer; Manufacturing and Materials Processing; Heat Transfer in Electronic Equipment; Heat and Mass Transfer in Biotechnology; Heat Transfer Under Extreme Conditions; Computational Heat Transfer; Heat Transfer Visualization Gallery; General Papers on Heat Transfer; Multiphase Flow and Heat Transfer; Transport Phenomena in Manufacturing and Materials Processing.
Publication Year :
2016
Publisher :
American Society of Mechanical Engineers, 2016.

Abstract

The present study deals with single bubble growth on an uneven wall. A model problem is defined and solved using a three-dimensional numerical simulation. The wall has the shape of a triangular cavity and feature vortices. The equations solved in the present study are based on macro region modelling of the bubble alone and describe its growth from the initial state to detachment from the surface and consequent motion. The model includes a simultaneous solution of conservation equations for the liquid and gaseous phases, in conjunction with three-dimensional interface tracking. The latter is achieved using the level-set method. The numerical modeling includes the multi-grid method. The complete three-dimensional model is discretized using an original in-house numerical code realized in MATLAB. Different cases of bubble growth on the triangular cavity walls are investigated. The main conclusion from the calculations is that the bubble shape and its growth rate strongly depend on its location and on the channel orientation. New features, not possible for flat walls and special for this case, are revealed and discussed. It is demonstrated that under certain conditions, the bubble is obstructed by the surface geometry. It is also shown how a growing bubble affects the flow field inside a cavity, interacting with the vortex structure.

Details

Database :
OpenAIRE
Journal :
Volume 2: Heat Transfer in Multiphase Systems; Gas Turbine Heat Transfer; Manufacturing and Materials Processing; Heat Transfer in Electronic Equipment; Heat and Mass Transfer in Biotechnology; Heat Transfer Under Extreme Conditions; Computational Heat Transfer; Heat Transfer Visualization Gallery; General Papers on Heat Transfer; Multiphase Flow and Heat Transfer; Transport Phenomena in Manufacturing and Materials Processing
Accession number :
edsair.doi...........c0101818908f2b5b0f051aa72c413944
Full Text :
https://doi.org/10.1115/ht2016-7393