Back to Search Start Over

Simulation of Urban Storm Water Runoff Control Based on Big Data

Authors :
Jinbao Cao
Yunzhu Liu
Source :
Journal of Physics: Conference Series. 2066:012076
Publication Year :
2021
Publisher :
IOP Publishing, 2021.

Abstract

The acceleration of urbanization has brought about rapid economic development, but at the same time, it has also brought some damage to the ecological environment. The proportion of hardened area of the ground is higher and higher, and the rainwater runoff pollution caused by rainfall is more and more serious. In order to follow the sustainable development strategy, and for the more stable and high-speed economic development, the control of rainwater runoff pollution is urgent. The purpose of this paper is to simulate the urban storm water runoff control and find the most suitable scheme for storm water runoff pollution control. Because the simulation of SWMM is more accurate than other models, it can directly reflect the situation of rainwater runoff pollution, so the model selected for rainwater runoff in this paper is SWMM, and then build the model, through the collection and collation of the basic data of the study area, the generalization of the sub catchment area and drainage network is completed. Through the analysis of the characteristics of the study area, the rainwater garden and permeable pavement are determined as the scheme to control the rainwater runoff in the study area. Finally, the SWMM model is used to simulate the control effect of rainwater garden and pervious pavement on rainwater runoff pollution control. The experimental results show that the storm water garden can effectively control the impact of SS scouring effect on the environment, significantly reduce the discharge of SS, and significantly reduce the peak concentration of SS, and its ability to control SS increases with the thickness of the surface plant layer. The control ability of rain permeable brick pavement to SS increases with the increase of surface porosity, that is, the control effect of SS is the best when the porosity is 20%.

Details

ISSN :
17426596 and 17426588
Volume :
2066
Database :
OpenAIRE
Journal :
Journal of Physics: Conference Series
Accession number :
edsair.doi...........be8f0a90af5431ae820031bd9d349fdb