Back to Search
Start Over
Boundary Hölder Gradient Estimates for the Monge–Ampère Equation
- Source :
- The Journal of Geometric Analysis. 30:2010-2035
- Publication Year :
- 2020
- Publisher :
- Springer Science and Business Media LLC, 2020.
-
Abstract
- We investigate global Holder gradient estimates for solutions to the Monge–Ampere equation $$\begin{aligned} {\mathrm {det}}\;D^2 u=f\quad {\mathrm {in}}\;\Omega , \end{aligned}$$where the right-hand side f is bounded away from 0 and $$\infty $$. We consider two main situations when (a) the domain $$\Omega $$ is uniformly convex and (b) $$\Omega $$ is flat.
- Subjects :
- 010102 general mathematics
Mathematical analysis
Regular polygon
Boundary (topology)
Monge–Ampère equation
01 natural sciences
Omega
Domain (mathematical analysis)
symbols.namesake
Differential geometry
Fourier analysis
Bounded function
0103 physical sciences
symbols
010307 mathematical physics
Geometry and Topology
0101 mathematics
Mathematics
Subjects
Details
- ISSN :
- 1559002X and 10506926
- Volume :
- 30
- Database :
- OpenAIRE
- Journal :
- The Journal of Geometric Analysis
- Accession number :
- edsair.doi...........be1eb2bb3690bd4d0fa2464786455171