Back to Search Start Over

A novel oil–water separator design and its performance prediction

Authors :
Xiao Guo
Zhiming Wang
Quanshu Zeng
Yan-long Zhao
Xiaoqiu Wang
Source :
Journal of Petroleum Science and Engineering. 145:83-94
Publication Year :
2016
Publisher :
Elsevier BV, 2016.

Abstract

Numerous oil wells, especially in their middle-late periods, are becoming less economic due to the high lifting costs and reduced recoveries. The downhole oil–water separation (DOWS) system is aimed to reduce the production cost, mitigate the environment impact, and enhance the oil recovery. However, current separators are of either poor separation effects or poor separation efficiencies. In this paper, a novel oil–water separator design is proposed based on the combination of two different flow resistance mechanisms and pipe serial-parallel theory, with the restrictive path restricting the heavier water, while the frictional path impeding the more viscous oil. Based on the combination of the flow pattern transformation criterion, homogenous model, two-fluid model, and pipe serial-parallel theory, a unified model of oil–water two-phase flow is developed to predict both the flow rate and water content distributions in different paths, which is then compared with the computational fluid dynamics (CFD) results. Unlike the CFD results, each path has a specific flow rate and water content, and as a consequence, specific flow regime and flow pattern. Both the CFD and model results show that the flow rate distributions in different paths of the separator will be adjusted automatically according to the fluid's property, while the model can also predict the water content distributions at the same time. And the average relative deviation between the CFD and model results for flow rate distribution is 14.24%, while that for water content distribution is 42.03%. Specifically, oil, being more viscous, mainly takes the restrictive path; while water, being heavier, tends to take the frictional path instead. To sum up, this autonomous function directs oil and water to different paths, hence oil and water is well separated.

Details

ISSN :
09204105
Volume :
145
Database :
OpenAIRE
Journal :
Journal of Petroleum Science and Engineering
Accession number :
edsair.doi...........bde65c10f98024e2df65c51fad666eaa
Full Text :
https://doi.org/10.1016/j.petrol.2016.03.015