Back to Search Start Over

Genomic organization of a UDP-glucosyltransferase gene determines differential accumulation of specific flavonoid glucosides in tepals

Authors :
Almudena Trapero Mozos
Mª Lourdes Gómez-Gómez
Oussama Ahrazem
Angela Rubio-Moraga
Source :
Plant Cell, Tissue and Organ Culture (PCTOC). 119:227-245
Publication Year :
2014
Publisher :
Springer Science and Business Media LLC, 2014.

Abstract

Glycosylation plays a major role in the chemical diversity of flavonoids. The wide diversity of the family-1 glycosyltransferase (UGT) impairs the determination of the biochemical function solely from its primary sequence. Here we combined differential expression and target metabolomic analysis in various Crocus species to identify a gene that is key in determining the flavonoid composition of Crocus species that belong to the Crocus series. UGT703B1 recognizes isorhamnetin and kaempferol as substrates in vitro. In addition, UGT703B1 expression was found to be highly correlated with the presence of kaempferol 7-O-biglucoside-3-O-β-glucoside and isorhamnetin-3,7-O-diglucoside. These flavonols were present in C. sativus and C. cartwrightianus albus, both from series Crocus but absent in Crocus species from the other series analyzed. Further, the presence of both flavonols was associated with the expression of UGT703B1, and this expression was correlated with the presence of the UGT703B1 coding gene, with the exception of C. cancellatus, whose genomic sequence was present but contained a shorter intronic sequence and promoter alterations, suggesting the presence of regulatory sequences in the deleted part of that intron and promoter important for UGT703B1 expression. Overall, the data obtained supports the involvement of UGT703B1 in the formation of specific kaempferol and isorhamnetin glucosides, while demonstrating that the integration of metabolomic and differential expression analysis is a versatile tool for understanding a multigene family of UGTs in Crocus.

Details

ISSN :
15735044 and 01676857
Volume :
119
Database :
OpenAIRE
Journal :
Plant Cell, Tissue and Organ Culture (PCTOC)
Accession number :
edsair.doi...........bdabb1ca28266e1bfe3bd8769f4372f0
Full Text :
https://doi.org/10.1007/s11240-014-0528-y