Back to Search Start Over

High-strength biodegradable poly(vinyl alcohol)/fly ash composite films

Authors :
Dilip Chandra Deb Nath
Darryl Blackburn
Chris White
Sri Bandyopadhyay
Philip Boughton
Aibing Yu
Source :
Journal of Applied Polymer Science.
Publication Year :
2010
Publisher :
Wiley, 2010.

Abstract

We prepared biodegradable composite films of poly(vinyl alcohol) (PVA) and fly ash (FA) spanning 5, 10, 15, 20, and 25 wt % concentrations by casting aqueous solutions. The tensile strengths of the composite films were increased proportionally via the addition of FA. The strength of the film was enhanced by 193% with 20% FA compared to the neat PVA control. Further addition of FA deviated from the linear trend. The moduli of the composites also increased proportionally with FA addition to 212% at 20 wt % FA addition compared to the control. The percentage strain at break exponentially decreased with the addition of FA. In the dynamic mechanical behavior, the storage and loss moduli both increased with FA content. The tan δ peaks corresponding to the glass-transition temperature shifted 5–10°C higher above the control sample (73°C). This shift was attributed to a reduction in the mobility of PVA segments because they were anchored by the FA surface. The reductions in mobility manifested in strong interfacial interactions were indicative of hydrogen bonding. Broadening and reduction in the intensities of the stretching and bending peaks of OH, CH and CO of PVA in the Fourier transform infrared spectra were observed. This suggested that hydrogen bonding was active between the functional groups in the FA and PVA chains. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010

Details

ISSN :
10974628 and 00218995
Database :
OpenAIRE
Journal :
Journal of Applied Polymer Science
Accession number :
edsair.doi...........bd70349a11d25180b03c1af318ba9264
Full Text :
https://doi.org/10.1002/app.31635