Back to Search Start Over

Valorization of salt post-modified poultry manure biochars for phosphorus recovery from aqueous solutions: investigations on adsorption properties and involved mechanism

Authors :
Marzena Kwapinska
Witold Kwapinski
James J. Leahy
Ahmed Amine Azzaz
Mejdi Jeguirim
Salah Jellali
Helmi Hamdi
Samar Hadroug
Source :
Biomass Conversion and Biorefinery. 12:4333-4348
Publication Year :
2021
Publisher :
Springer Science and Business Media LLC, 2021.

Abstract

In this research work, raw poultry manure biochar (RPM-B) was post-modified by two metal salts and then evaluated for P recovery from aqueous solutions in batch mode. The modified biochar characterization showed that RPM-B impregnation with aluminum and manganese salts led to a significant improvement of their surface properties through the pH-zero charge reduction as well as the specific surface areas and the functional group contents increase. Phosphorus recovery tests indicated that the post-treated biochar with AlCl3 (RPM-B-Al) and with KMnO4 (RPM-B-Mn) exhibited relatively high recovery efficiencies with Langmuir’s adsorption capacities of 23.5 and 8.4 mg g−1, respectively. Kinetics and isothermal data modeling, as well as the in-depth analytical characterization of the post-modified biochars before and after adsorption, indicates that P recovery occurs homogeneously on monolayer surfaces through mainly anion exchange, precipitation, and electrostatic interactions. On the other hand, P desorption efficiency increases with the desorbing solution pH values. The best P desorption yields were observed for an initial pH of 9.0 to 78% and 80% for RPM-B-Al-P and RPM-B-Mn-P, respectively. All these results suggest that RPM-B-Al and RPM-B-Mn could be considered promising materials for phosphorus recovery from wastewaters with a possible reuse in agriculture as potential soil amendments.

Details

ISSN :
21906823 and 21906815
Volume :
12
Database :
OpenAIRE
Journal :
Biomass Conversion and Biorefinery
Accession number :
edsair.doi...........bd141619228ce95d735f5672e2bab3b9