Back to Search Start Over

Antibacterial, Antitubercular and Antiviral Activity Evaluations of Some Arylidenehydrazide Derivatives Bearing Imidazo[2,1-b]thiazole Moiety

Authors :
Nuray Ulusoy Güzeldemirci
Ömer Küçükbasmacı
Berin Karaman
Source :
Turkish Journal of Pharmaceutical Sciences. 14:157-163
Publication Year :
2017
Publisher :
Galenos Yayinevi, 2017.

Abstract

Objectives The aim of this study was to determine the probable antibacterial, antitubercular, and antiviral activities of some N2 -arylidene-(6-(4-chlorophenyl)imidazo[2,1-b]thiazol-3-yl) acetic acid hydrazides (3a-j). Further structural optimization of the identified lead structures can lead us to new more active potential antibacterial, antitubercular, and antiviral agents. Materials and methods Antibacterial activities of the title compounds against Staphylococcus aureus ATCC 29213, Pseudomonas aeruginosa ATCC 27853 and Escherichia coli ATCC 25922. These molecules were also evaluated for their in vitro antitubercular activity against Mycobacterium tuberculosis H37Rv (ATCC 27294) using the BACTEC 460 radiometric system and BACTEC 12B medium. Moreover, all the compounds (3a-j) were also evaluated against some DNA and RNA viruses in Madin-Darby Canine Kidney, Crandell-Rees Feline Kidney (CRFK), Vero, human embryonic lung (HEL) and HeLa cells. Results Among the tested compounds, 3i displayed the highest efficacy against S. aureus and E. coli. Compound 3j, 5-nitro-2-furfurylidene derivative showed the highest antituberculosis activity (IC50: 6.16 µg/mL and IC90: 14.390 µg/mL). Compound 3i showed the most potent antiviral activity against feline corona virus in CRFK cell cultures (antiviral EC50: 7.5 µM and SI>13). Furthermore, compounds 3c and 3g displayed activity against herpes simplex virus-1 and vaccinia virus in HEL cell cultures (antiviral EC50 values of 9; 16 and 20; 14 µM, respectively). Conclusion On the basis of aforementioned results, it can be conluded that imidazo[2,1-b]thiazole derivatives bearing hydrazone moieties serve as promising chemical probes to design therapeutic agents with antibacterial, antitubercular, and antiviral properties.

Details

ISSN :
21486247 and 1304530X
Volume :
14
Database :
OpenAIRE
Journal :
Turkish Journal of Pharmaceutical Sciences
Accession number :
edsair.doi...........bcf65d57ad04c88e980e7219c0dcea97