Back to Search Start Over

Tensile properties, strain rate sensitivity, and activation volume of additively manufactured 316L stainless steels

Authors :
Chandrika Kamath
Thomas Voisin
T. Braun
Joseph T. McKeown
Jianchao Ye
Y. Morris Wang
Wayne E. King
Zan Li
Source :
International Journal of Plasticity. 120:395-410
Publication Year :
2019
Publisher :
Elsevier BV, 2019.

Abstract

The tensile properties of additively manufactured (AM) metals and alloys are among the most important variables that impact the potential applications of these materials. Here we examine and report on the tensile properties of AM 316L stainless steels fabricated by the laser powder-bed-fusion (L-PBF) technique, via twelve sets of optimized laser processing parameters that produce materials with density >98.8 ± 0.10%. A heterogeneous microstructure is observed in all L-PBF samples, including microscopic features such as dislocations, cellular walls, elemental segregations, local misorientations, impurities, precipitates, and a large fraction of low-angle grain boundaries (2-10°, ∼40–60%). The derived average grain size defined by high-angle grain boundaries (>10°) is ∼30–50 μm. Tensile testing reveals a yield strength ranging from 552 to 635 MPa and a tensile-elongation-to-failure (TEF) of 0.09–0.42 for directly-printed samples, whereas these values are 592–690 MPa and 0.29–0.50 for samples machined from the as-built rectangular thin plates. In all samples, we observe a variation of tensile yield strength within ∼15% but not the TEF, suggesting marginal microstructural changes despite a wide range of laser processing parameters. The large scatter of TEF in directly-printed samples originates from the sensitivity of thin gauge geometry (∼2 mm2 cross-section area) to the built-in flaws. We measured a substantially higher strain rate sensitivity (m∼0.02–0.03) of L-PBF 316L compared to the coarse-grained counterparts (∼0.006), together with a small activation volume of ∼20–30b3 (where b is the Burgers vector of 316L). These deformation kinetics parameters suggest that the tensile plasticity of L-PBF 316L is controlled by a much finer microstructural length scale than the measured grain size, consistent with the high strength and juxtaposed nano- to macro-structures seen in these materials. Strategies to optimize the tensile properties of AM materials are discussed.

Details

ISSN :
07496419
Volume :
120
Database :
OpenAIRE
Journal :
International Journal of Plasticity
Accession number :
edsair.doi...........bc3ecf767ec16f327cd4c2ccbc8b3ae3