Back to Search Start Over

The commuting graph of the symmetric inverse semigroup

Authors :
Wolfram Bentz
Konieczny Janusz
João Araújo
Source :
Israel Journal of Mathematics. 207:103-149
Publication Year :
2015
Publisher :
Springer Science and Business Media LLC, 2015.

Abstract

The commuting graph of a finite non-commutative semigroup S, denoted G(S), is a simple graph whose vertices are the non-central elements of S and two distinct vertices x, y are adjacent if xy = yx. Let I(X) be the symmetric inverse semigroup of partial injective transformations on a finite set X. The semigroup I(X) has the symmetric group Sym(X) of permutations on X as its group of units. In 1989, Burns and Goldsmith determined the clique number of the commuting graph of Sym(X). In 2008, Iranmanesh and Jafarzadeh found an upper bound of the diameter of G(Sym(X)), and in 2011, Dolžan and Oblak claimed that this upper bound is in fact the exact value. The goal of this paper is to begin the study of the commuting graph of the symmetric inverse semigroup I(X). We calculate the clique number of G(I(X)), the diameters of the commuting graphs of the proper ideals of I(X), and the diameter of G(I(X)) when |X| is even or a power of an odd prime. We show that when |X| is odd and divisible by at least two primes, then the diameter of G(I(X)) is either 4 or 5. In the process, we obtain several results about semigroups, such as a description of all commutative subsemigroups of I(X) of maximum order, and analogous results for commutative inverse and commutative nilpotent subsemigroups of I(X). The paper closes with a number of problems for experts in combinatorics and in group or semigroup theory.

Details

ISSN :
15658511 and 00212172
Volume :
207
Database :
OpenAIRE
Journal :
Israel Journal of Mathematics
Accession number :
edsair.doi...........bbf1ebb7bfb333f369a1e4abad3d5a99