Back to Search
Start Over
Copernicus CO2M mission: Status of the instrument suite for monitoring anthropogenic carbon dioxide emissions from space
- Source :
- Sensors, Systems, and Next-Generation Satellites XXV.
- Publication Year :
- 2021
- Publisher :
- SPIE, 2021.
-
Abstract
- The European Space Agency (ESA), in collaboration with the European Commission (EC) and EUMETSAT, is developing as part of the EC’s Copernicus programme, a space-borne observing system for quantification of anthropogenic carbon dioxide (CO2) emissions. The anthropogenic CO2 monitoring (CO2M) mission will be implemented as a constellation of identical LEO satellites, to be operated over a period > 7 years and measuring CO2 concentration in terms of column-averaged dry air mole fraction (denoted as XCO2). Industrial activities for the phase B2CD have been kicked-off Mid 2020. The demanding requirements necessitate a payload composed of a suite of instruments, which simultaneously perform co-located measurements. A push-broom imaging spectrometer will perform co-located measurements of top-of-atmosphere radiances in the Near Infrared (NIR) and Short-Wave Infrared (SWIR) at high to moderate spectral resolution (NIR: 747- 773nm @0.1nm, SWIR-1: 1595-1675nm @0.3nm, SWIR-2: 1990-2095nm @0.35nm) for retrieving XCO2. These observations are complemented in the same spectrometer by measurements in the visible spectral range (405-490 nm @0.6nm), providing vertical column measurements of nitrogen dioxide (NO2) that serve as a tracer to high temperature combustion of fossil-fuel and related emission plumes (e.g. from coal-fired power plants and cities). High quality retrievals of XCO2 will be ensured even in situations of large aerosol loading, thanks to co-located measurements of aerosol resulting from a Multiple- Angle Polarimeter (MAP). Polarimetric measurements are performed over 40 angular views and in six spectral channels between 410 and 865 nm. Finally, due to the strong sensitivity of the XCO2 retrieval to cloud contamination, a three-band Cloud Imager (CLIM) will provide the required capacity to detect small tropospheric clouds and cirrus cover with an accuracy of 1% to 5% and a sampling better than 400 m.
Details
- Database :
- OpenAIRE
- Journal :
- Sensors, Systems, and Next-Generation Satellites XXV
- Accession number :
- edsair.doi...........bbaa5a50f23025db0a67169504917755
- Full Text :
- https://doi.org/10.1117/12.2599841