Back to Search Start Over

Wildtype motoneurons, ALS-Linked SOD1 mutation and glutamate profoundly modify astrocyte metabolism and lactate shuttling

Authors :
Blandine Madji Hounoum
Sylviane Marouillat
Patrick Emond
Cédric Raoul
Philippe Corcia
Patrick Vourc'h
Emmanuelle Coque
Lydie Nadal-Desbarats
Franck Patin
Christian R. Andres
Hélène Blasco
Sylvie Mavel
Source :
Glia. 65:592-605
Publication Year :
2017
Publisher :
Wiley, 2017.

Abstract

The selective degeneration of motoneuron that typifies amyotrophic lateral sclerosis (ALS) implicates non-cell-autonomous effects of astrocytes. However, mechanisms underlying astrocyte-mediated neurotoxicity remain largely unknown. According to the determinant role of astrocyte metabolism in supporting neuronal function, we propose to explore the metabolic status of astrocytes exposed to ALS-associated conditions. We found a significant metabolic dysregulation including purine, pyrimidine, lysine, and glycerophospholipid metabolism pathways in astrocytes expressing an ALS-causing mutated superoxide dismutase-1 (SOD1) when co-cultured with motoneurons. SOD1 astrocytes exposed to glutamate revealed a significant modification of the astrocyte metabolic fingerprint. More importantly, we observed that SOD1 mutation and glutamate impact the cellular shuttling of lactate between astrocytes and motoneurons with a decreased in extra- and intra-cellular lactate levels in astrocytes. Based on the emergent strategy of metabolomics, this work provides novel insight for understanding metabolic dysfunction of astrocytes in ALS conditions and opens the perspective of therapeutics targets through focusing on these metabolic pathways. GLIA 2017 GLIA 2017;65:592-605.

Details

ISSN :
08941491
Volume :
65
Database :
OpenAIRE
Journal :
Glia
Accession number :
edsair.doi...........bb2ad4a45cc75a8f6b6b1458bc00717d