Back to Search Start Over

Micro-milling force modeling with tool wear and runout effect by spatial analytic geometry

Authors :
Li Guochao
Kunpeng Zhu
Si Li
Source :
The International Journal of Advanced Manufacturing Technology. 107:631-643
Publication Year :
2020
Publisher :
Springer Science and Business Media LLC, 2020.

Abstract

One of the major limitations of micro-milling applications in industries is its fast tool wear, which leads to low machining precision and efficiency. An accurate force model is fundamental for optimization micro-milling processes and minimize the tool wear. However, a generic model with tool runout and wear effect has not yet been established, which limits its practical application under varied working conditions. In this paper, a new idea is introduced by applying the spatial analytic geometry (SAG) method, under this framework the micro-milling force model is established based on the analysis of the geometrical relationship among the cutting edge positions, pre-processed workpiece morphology, and cutting force directions considering tool runout and wear effect. In this model, the tool runout is identified exclusively by only one parameter, namely the distance away from the center that perpendicular to the feed direction, so that it could be calibrated conveniently by calculating the ratio of resultant forces corresponding to different cutting edges. The tool wear–induced force is then modeled as increment of force coefficients to the original model. Therefore, the new force model with considering tool wear has the same form as the fresh tool. Finally, the accuracy and efficiency of the model are validated by experiments under varied working conditions.

Details

ISSN :
14333015 and 02683768
Volume :
107
Database :
OpenAIRE
Journal :
The International Journal of Advanced Manufacturing Technology
Accession number :
edsair.doi...........ba1f9aa4327e488d7a37f9e17686dad6
Full Text :
https://doi.org/10.1007/s00170-020-05008-3