Back to Search Start Over

Super-Resolution ISAR Imaging for Maneuvering Target Based on Deep-Learning-Assisted Time–Frequency Analysis

Authors :
Xiaobo Yang
Guoan Bi
Shaoyin Huang
Lu Wang
Jiang Qian
Source :
IEEE Transactions on Geoscience and Remote Sensing. 60:1-14
Publication Year :
2022
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2022.

Abstract

Traditional range-instantaneous Doppler (RID) methods for maneuvering target imaging suffer from the problems of low resolution and poor noise suppression. We propose a new super-resolution inverse synthetic aperture radar (ISAR) imaging method based on deep-learning-assisted time-frequency analysis (TFA). Our deep neural network resembles the basic structure of a U-net with two additional convolutional-upsampling layers and l₁-norm loss function for super-resolution generation and noise suppression. The neural network is trained in advance to learn the mapping function between the low-resolution time-frequency spectrum inputs and their high-resolution references. Then, the linear TFA assisted by the pretrained network is integrated into the RID-based ISAR imaging system and is found to achieve sharply focused and denoised target image with super-resolution. Both the simulated and real radar data are used to evaluate the performance of the proposed method. Numerical experimental results demonstrate the superiority of the proposed ISAR imaging method over traditional ones.

Details

ISSN :
15580644 and 01962892
Volume :
60
Database :
OpenAIRE
Journal :
IEEE Transactions on Geoscience and Remote Sensing
Accession number :
edsair.doi...........b9f67ba6c768c27ef50d47c4cdb94db6