Back to Search Start Over

Features of a Smad3 MH1-DNA Complex

Authors :
Nikola P. Pavletich
Nieng Yan
Joan Massagué
Yigong Shi
Jijie Chai
Jia-Wei Wu
Source :
Journal of Biological Chemistry. 278:20327-20331
Publication Year :
2003
Publisher :
Elsevier BV, 2003.

Abstract

The Smad family of proteins mediates transforming growth factor-β signaling from cell membrane to the nucleus. In the nucleus, Smads serve as transcription factors by directly binding to specific DNA sequences and regulating the expression of ligand-response genes. A previous structural analysis, at 2.8-A resolution, revealed a novel DNA-binding mode for the Smad MH1 domain but did not allow accurate assignment of the fines features of protein-DNA interactions. The crystal structure of a Smad3 MH1 domain bound to a palindromic DNA sequence, determined at 2.4-A resolution, reveals a surprisingly important role for water molecules. The asymmetric placement of the DNA-binding motif (a conserved 11-residue β-hairpin) in the major groove of DNA is buttressed by seven well ordered water molecules. These water molecules make specific hydrogen bonds to the DNA bases, the DNA phosphate backbones, and several critical Smad3 residues. In addition, the MH1 domain is found to contain a bound zinc atom using four invariant residues among Smad proteins, three cysteines and one histidine. Removal of the zinc atom results in compromised DNA binding activity. These results define the Smad MH1 domain as a zinc-coordinating module that exhibits unique DNA binding properties.

Details

ISSN :
00219258
Volume :
278
Database :
OpenAIRE
Journal :
Journal of Biological Chemistry
Accession number :
edsair.doi...........b831a2c27ba5a15d9b450dc2629cac1d
Full Text :
https://doi.org/10.1074/jbc.c300134200