Back to Search
Start Over
UV and X-ray structural studies of a 101-residue long Tat protein from a HIV-1 primary isolate and of its mutated, detoxified, vaccine candidate
- Source :
- Proteins: Structure, Function, and Bioinformatics. 78:1441-1456
- Publication Year :
- 2009
- Publisher :
- Wiley, 2009.
-
Abstract
- The 101-residue long Tat protein of primary isolate 133 of the human immunodeficiency virus type 1 (HIV-1), wt-Tat(133) displays a high transactivation activity in vitro, whereas the mutant thereof, STLA-Tat(133), a vaccine candidate for HIV-1, has none. These two proteins were chemically synthesized and their biological activity was validated. Their structural properties were characterized using circular dichroism (CD), fluorescence emission, gel filtration, dynamic light scattering, and small angle X-ray scattering (SAXS) techniques. SAXS studies revealed that both proteins were extended and belong to the family of intrinsically unstructured proteins. CD measurements showed that wt-Tat(133) or STLA-Tat(133) underwent limited structural rearrangements when complexed with specific fragments of antibodies. Crystallization trials have been performed on the two forms, assuming that the Tat(133) proteins might have a better propensity to fold in supersaturated conditions, and small crystals have been obtained. These results suggest that biologically active Tat protein is natively unfolded and requires only a limited gain of structure for its function.
- Subjects :
- 0303 health sciences
Circular dichroism
Small-angle X-ray scattering
030302 biochemistry & molecular biology
Size-exclusion chromatography
Mutant
Biological activity
Biology
Biochemistry
In vitro
3. Good health
03 medical and health sciences
Transactivation
Structural Biology
Primary isolate
Molecular Biology
030304 developmental biology
Subjects
Details
- ISSN :
- 08873585
- Volume :
- 78
- Database :
- OpenAIRE
- Journal :
- Proteins: Structure, Function, and Bioinformatics
- Accession number :
- edsair.doi...........b7add25397a2f48acf8eabadbcca90e2
- Full Text :
- https://doi.org/10.1002/prot.22661