Back to Search
Start Over
Optimization of vacuum casting process parameters to enhance tensile strength of components using design of experiments approach
- Source :
- The International Journal of Advanced Manufacturing Technology. 106:3775-3785
- Publication Year :
- 2020
- Publisher :
- Springer Science and Business Media LLC, 2020.
-
Abstract
- Vacuum casting is one of the widely used methods for small-volume production of plastic parts. The main challenge of this method is to choose the optimal working parameters to manufacture plastic parts with better mechanical properties. The conventional vacuum casting (CVC) technology uses gravity to make the casing material to fill the mold cavity, resulting in the yield of the molded components with high tensile strength is relatively low. Vacuum differential pressure casting (VDPC) can overcome this disadvantage since the filling mechanism of the casting material is different from CVC process. In this study, integration of design of experiments approach and the VDPC technique was employed to enhance tensile strength of molded components. It was found that the most important control factor affecting the tensile strength of the fabricated component is the mold cavity temperature, followed by the material mixing time, the differential pressure time, and the mixing chamber inlet valve angle. The optimal process parameters for producing components with better tensile strength are the mold cavity temperature of 35 °C, the material mixing time of 40 s, the differential pressure time of 8 s, and the mixing chamber inlet valve angle of 60 °.
- Subjects :
- 0209 industrial biotechnology
Yield (engineering)
Materials science
Mechanical Engineering
Design of experiments
Vacuum casting
Mixing (process engineering)
02 engineering and technology
medicine.disease_cause
Industrial and Manufacturing Engineering
Computer Science Applications
020901 industrial engineering & automation
Control and Systems Engineering
Casting (metalworking)
Mold
Ultimate tensile strength
medicine
Composite material
Casing
Software
Subjects
Details
- ISSN :
- 14333015 and 02683768
- Volume :
- 106
- Database :
- OpenAIRE
- Journal :
- The International Journal of Advanced Manufacturing Technology
- Accession number :
- edsair.doi...........b757329e8310889045942a990c4724ff