Back to Search Start Over

Gradings and Derived Categories

Authors :
Dieter Happel
Edward L. Green
Source :
Algebras and Representation Theory. 14:497-513
Publication Year :
2009
Publisher :
Springer Science and Business Media LLC, 2009.

Abstract

Let \({{\mathcal G}}\) be a group, Λ a \({{\mathcal G}}\)-graded Artin algebra and gr(Λ) denote the category of finitely generated \({{\mathcal G}}\)-graded Λ-modules. This paper provides a framework that allows an extension of tilting theory to \({{\mathcal D}}^b(\rm gr(\Lambda))\) and to study connections between the tilting theories of \({{\mathcal D}}^b(\Lambda)\) and \({{\mathcal D}}^b(\rm gr(\Lambda))\). In particular, using that if T is a gradable Λ-module, then a grading of T induces a \({{\mathcal G}}\)-grading on EndΛ(T), we obtain conditions under which a derived equivalence induced by a gradable Λ-tilting module T can be lifted to a derived equivalence between the derived categories \({{\mathcal D}}^b(\rm gr(\Lambda))\) and \({{\mathcal D}}^b(\rm gr(\rm End_{\Lambda}(\textit T)))\).

Details

ISSN :
15729079 and 1386923X
Volume :
14
Database :
OpenAIRE
Journal :
Algebras and Representation Theory
Accession number :
edsair.doi...........b73b15394c70ff5a198006d62cc3172e
Full Text :
https://doi.org/10.1007/s10468-009-9200-3