Back to Search
Start Over
Gradings and Derived Categories
- Source :
- Algebras and Representation Theory. 14:497-513
- Publication Year :
- 2009
- Publisher :
- Springer Science and Business Media LLC, 2009.
-
Abstract
- Let \({{\mathcal G}}\) be a group, Λ a \({{\mathcal G}}\)-graded Artin algebra and gr(Λ) denote the category of finitely generated \({{\mathcal G}}\)-graded Λ-modules. This paper provides a framework that allows an extension of tilting theory to \({{\mathcal D}}^b(\rm gr(\Lambda))\) and to study connections between the tilting theories of \({{\mathcal D}}^b(\Lambda)\) and \({{\mathcal D}}^b(\rm gr(\Lambda))\). In particular, using that if T is a gradable Λ-module, then a grading of T induces a \({{\mathcal G}}\)-grading on EndΛ(T), we obtain conditions under which a derived equivalence induced by a gradable Λ-tilting module T can be lifted to a derived equivalence between the derived categories \({{\mathcal D}}^b(\rm gr(\Lambda))\) and \({{\mathcal D}}^b(\rm gr(\rm End_{\Lambda}(\textit T)))\).
Details
- ISSN :
- 15729079 and 1386923X
- Volume :
- 14
- Database :
- OpenAIRE
- Journal :
- Algebras and Representation Theory
- Accession number :
- edsair.doi...........b73b15394c70ff5a198006d62cc3172e
- Full Text :
- https://doi.org/10.1007/s10468-009-9200-3