Back to Search
Start Over
In-beam γ -ray and electron spectroscopy of Md249,251
- Source :
- Physical Review C. 102
- Publication Year :
- 2020
- Publisher :
- American Physical Society (APS), 2020.
-
Abstract
- The odd-Z Md251 nucleus was studied using combined γ-ray and conversion-electron in-beam spectroscopy. Besides the previously observed rotational band based on the [521]1/2− configuration, another rotational structure has been identified using γ-γ coincidences. The use of electron spectroscopy allowed the rotational bands to be observed over a larger rotational frequency range. Using the transition intensities that depend on the gyromagnetic factor, a [514]7/2− single-particle configuration has been inferred for this band, i.e., the ground-state band. A physical background that dominates the electron spectrum with an intensity of ≃60% was well reproduced by simulating a set of unresolved excited bands. Moreover, a detailed analysis of the intensity profile as a function of the angular momentum provided a method for deriving the orbital gyromagnetic factor, namely gK=0.69−0.16+0.19 for the ground-state band. The odd-Z Md249 was studied using γ-ray in-beam spectroscopy. Evidence for octupole correlations resulting from the mixing of the Δl=Δj=3 [521]3/2− and [633]7/2+ Nilsson orbitals were found in both Md249,251. A surprising similarity of the Md251 ground-state band transition energies with those of the excited band of Lr255 has been discussed in terms of identical bands. Skyrme-Hartree-Fock-Bogoliubov calculations were performed to investigate the origin of the similarities between these bands.
Details
- ISSN :
- 24699993 and 24699985
- Volume :
- 102
- Database :
- OpenAIRE
- Journal :
- Physical Review C
- Accession number :
- edsair.doi...........b69a2a5d3d2a3b9f07de069a78ecab1a
- Full Text :
- https://doi.org/10.1103/physrevc.102.014307