Back to Search Start Over

Standing waves for a coupled system of nonlinear Schrödinger equations

Authors :
Wenming Zou
Zhijie Chen
Source :
Annali di Matematica Pura ed Applicata (1923 -). 194:183-220
Publication Year :
2013
Publisher :
Springer Science and Business Media LLC, 2013.

Abstract

We study the following system of nonlinear Schrodinger equations: $$\begin{aligned} \left\{ \begin{array}{l} -\varepsilon ^2\Delta u +a(x) u = f(u)+\lambda v, \quad x\in \mathbb R ^N, \\ -\varepsilon ^2\Delta v +b(x) v =g(v)+\lambda u, \quad x\in \mathbb R ^N,\\ u,v >0 \,\,\,\hbox {in}\,\,\,\mathbb R ^N,\quad u, v \in H^1 (\mathbb R ^N), \end{array}\right. \end{aligned}$$ where \(N\ge 3\), \(\varepsilon , \lambda >0\), and \(a, b, f, g\) are continuous functions. Under very general assumptions on both the potentials \(a, b\) and the nonlinearities \(f, g\), for small \(\lambda >0\) and \(\varepsilon >0\), we obtain positive solutions of this coupled system via pure variational methods. The asymptotic behaviors of these solutions are also studied either as \(\varepsilon \rightarrow 0\) or as \(\lambda \rightarrow 0\).

Details

ISSN :
16181891 and 03733114
Volume :
194
Database :
OpenAIRE
Journal :
Annali di Matematica Pura ed Applicata (1923 -)
Accession number :
edsair.doi...........b631dfdc1b02d5f9b841deba906c0c0c
Full Text :
https://doi.org/10.1007/s10231-013-0371-5