Back to Search
Start Over
Standing waves for a coupled system of nonlinear Schrödinger equations
- Source :
- Annali di Matematica Pura ed Applicata (1923 -). 194:183-220
- Publication Year :
- 2013
- Publisher :
- Springer Science and Business Media LLC, 2013.
-
Abstract
- We study the following system of nonlinear Schrodinger equations: $$\begin{aligned} \left\{ \begin{array}{l} -\varepsilon ^2\Delta u +a(x) u = f(u)+\lambda v, \quad x\in \mathbb R ^N, \\ -\varepsilon ^2\Delta v +b(x) v =g(v)+\lambda u, \quad x\in \mathbb R ^N,\\ u,v >0 \,\,\,\hbox {in}\,\,\,\mathbb R ^N,\quad u, v \in H^1 (\mathbb R ^N), \end{array}\right. \end{aligned}$$ where \(N\ge 3\), \(\varepsilon , \lambda >0\), and \(a, b, f, g\) are continuous functions. Under very general assumptions on both the potentials \(a, b\) and the nonlinearities \(f, g\), for small \(\lambda >0\) and \(\varepsilon >0\), we obtain positive solutions of this coupled system via pure variational methods. The asymptotic behaviors of these solutions are also studied either as \(\varepsilon \rightarrow 0\) or as \(\lambda \rightarrow 0\).
Details
- ISSN :
- 16181891 and 03733114
- Volume :
- 194
- Database :
- OpenAIRE
- Journal :
- Annali di Matematica Pura ed Applicata (1923 -)
- Accession number :
- edsair.doi...........b631dfdc1b02d5f9b841deba906c0c0c
- Full Text :
- https://doi.org/10.1007/s10231-013-0371-5