Back to Search Start Over

RSNA QIBA ultrasound shear wave speed Phase II phantom study in viscoelastic media

Authors :
Manish Dhyani
David J. Napolitano
Pengfei Song
Mark L. Palmeri
Michael MacDonald
Zaegyoo Hah
Michael Wang
Glen McLaughlin
Gee Albert
Kathy Nightingale
Matthew W. Urban
Shana Fielding
Keith A. Wear
Yufeng Deng
Yuling Chen
Yasuo Miyajima
Yoko Okamura
Gilles Guenette
Shigao Chen
Stephen J. Rosenzweig
Hua Xie
Andy Milkowski
Anthony E. Samir
Nancy A. Obuchowski
Paul L. Carson
Steve McAleavey
Brian S. Garra
Timothy J. Hall
Richard G. Barr
Ned C. Rouze
Vijay Shamdasani
Ted Lynch
Source :
2015 IEEE International Ultrasonics Symposium (IUS).
Publication Year :
2015
Publisher :
IEEE, 2015.

Abstract

Using ultrasonic shear wave speed (SWS) estimates has become popular to noninvasively evaluate liver fibrosis, but significant inter-system variability in liver SWS measurements can preclude meaningful comparison of measurements performed with different systems. The RSNA Quantitative Imaging Biomarker Alliance (QIBA) ultrasound SWS committee has been developing elastic and viscoelastic (VE) phantoms to evaluate system dependencies of SWS estimates. The objective of this study is to compare SWS measurements between commercially-available systems using phantoms that have viscoelastic properties similar to those observed in normal and fibrotic liver. CIRS, Inc. fabricated three phantoms using a proprietary oil-water emulsion infused in a Zerdine® hydrogel that were matched in viscoelastic behavior to healthy and fibrotic human liver data. Phantoms were measured at academic, clinical, government and vendor sites using different systems with curvilinear arrays at multiple focal depths (3.0, 4.5 & 7.0 cm). The results of this study show that current-generation ultrasound SWS measurement systems are able to differentiate viscoelastic materials that span healthy to fibrotic liver. The deepest focal depth (7.0 cm) yielded the greatest inter-system variability for each phantom (maximum of 17.7%) as evaluated by IQR. Inter-system variability was consistent across all 3 phantoms and was not a function of stiffness. Median SWS estimates for the greatest outlier system for each phantom/focal depth combination ranged from 12.7–17.6%. Future efforts will include performing more robust statistical analyses of these data, comparing these phantom data trends with viscoelastic digital phantom data, providing vendors with study site data to refine their systems to have more consistent measurements, and integrating these data into the QIBA ultrasound shear wave speed measurement profile.

Details

Database :
OpenAIRE
Journal :
2015 IEEE International Ultrasonics Symposium (IUS)
Accession number :
edsair.doi...........b62a815548ca299c791178cab8f49674