Back to Search Start Over

Reducing the erosive wear rate of Cr2AlC MAX phase ceramic by oxidative healing of local impact damage

Authors :
Christoph Leyens
Sybrand van der Zwaag
Lu Shen
Willem G. Sloof
Daniel Eichner
Source :
Wear. :1-6
Publication Year :
2016
Publisher :
Elsevier BV, 2016.

Abstract

The present work describes a model study to explore the possibility to heal early stage erosion damage in Cr 2 AlC MAX phase when exposed to high air temperatures and erosive conditions. Such a healing reaction should lead to a reduction of the wear rate of this promising material for application in jet turbine engines. To this aim Cr 2 AlC ceramic disks were subjected to room temperature erosion for 60 min using glass microbeads accelerated to 110 m/s and impinging perpendicular to the sample surface. After the usual incubation time, the erosion rate reaches a constant rate, which is associated with the formation of network of small cracks underneath the surface. Next, the material was annealed at 1200 °C for 10 min in air resulting in filling of the network of small cracks due to the formation of well-adhering Al 2 O 3 . The subsequent erosion rate of the healed Cr 2 AlC ceramic at room temperature is drastically reduced. Once the healed zone is removed by erosion the erosion rate attained its original value. Clearly, exposure to high temperature oxidative conditions extends the lifetime of Cr 2 AlC MAX phase components subjected to erosive conditions.

Details

ISSN :
00431648
Database :
OpenAIRE
Journal :
Wear
Accession number :
edsair.doi...........b584f39e67c4246dcfa07b9240e3cedc
Full Text :
https://doi.org/10.1016/j.wear.2016.03.019