Back to Search
Start Over
[Untitled]
- Source :
- Big Data & Society.
-
Abstract
- Machine learning has become a key component of contemporary information systems. Unlike prior information systems explicitly programmed in formal languages, ML systems infer rules from data. This paper shows what this difference means for the critical analysis of socio-technical systems based on machine learning. To provide a foundation for future critical analysis of machine learning-based systems, we engage with how the term is framed and constructed in self-education resources. For this, we analyze machine learning tutorials, an important information source for self-learners and a key tool for the formation of the practices of the machine learning community. Our analysis identifies canonical examples of machine learning as well as important misconceptions and problematic framings. Our results show that machine learning is presented as being universally applicable and that the application of machine learning without special expertise is actively encouraged. Explanations of machine learning algorithms are missing or strongly limited. Meanwhile, the importance of data is vastly understated. This has implications for the manifestation of (new) social inequalities through machine learning-based systems.
- Subjects :
- Information Systems and Management
Computer science
business.industry
Communication
05 social sciences
050801 communication & media studies
050109 social psychology
Library and Information Sciences
Machine learning
computer.software_genre
Computer Science Applications
0508 media and communications
Critical data studies
Component (UML)
Formal language
Key (cryptography)
Information system
0501 psychology and cognitive sciences
Artificial intelligence
business
computer
Prior information
Information Systems
Subjects
Details
- ISSN :
- 20539517
- Database :
- OpenAIRE
- Journal :
- Big Data & Society
- Accession number :
- edsair.doi...........b4f0321a67ead4b13850934f979a94ed