Back to Search
Start Over
Automatic Segmentation of Parkinson Disease Therapeutic Targets Using Nonlinear Registration and Clinical MR Imaging: Comparison of Methodology, Presence of Disease, and Quality Control
- Source :
- Stereotactic and Functional Neurosurgery. 101:146-157
- Publication Year :
- 2023
- Publisher :
- S. Karger AG, 2023.
-
Abstract
- Introduction: Accurate and precise delineation of the globus pallidus pars interna (GPi) and subthalamic nucleus (STN) is critical for the clinical treatment and research of Parkinson’s disease (PD). Automated segmentation is a developing technology which addresses limitations of visualizing deep nuclei on MR imaging and standardizing their definition in research applications. We sought to compare manual segmentation with three workflows for template-to-patient nonlinear registration providing atlas-based automatic segmentation of deep nuclei. Methods: Bilateral GPi, STN, and red nucleus (RN) were segmented for 20 PD and 20 healthy control (HC) subjects using 3T MRIs acquired for clinical purposes. The automated workflows used were an option available in clinical practice and two common research protocols. Quality control (QC) was performed on registered templates via visual inspection of readily discernible brain structures. Manual segmentation using T1, proton density, and T2 sequences was used as “ground truth” data for comparison. Dice similarity coefficient (DSC) was used to assess agreement between segmented nuclei. Further analysis was done to compare the influences of disease state and QC classifications on DSC. Results: Automated segmentation workflows (CIT-S, CRV-AB, and DIST-S) had the highest DSC for the RN and lowest for the STN. Manual segmentations outperformed automated segmentation for all workflows and nuclei; however, for 3/9 workflows (CIT-S STN, CRV-AB STN, and CRV-AB GPi) the differences were not statically significant. HC and PD only showed significant differences in 1/9 comparisons (DIST-S GPi). QC classification only demonstrated significantly higher DSC in 2/9 comparisons (CRV-AB RN and GPi). Conclusion: Manual segmentations generally performed better than automated segmentations. Disease state does not appear to have a significant effect on the quality of automated segmentations via nonlinear template-to-patient registration. Notably, visual inspection of template registration is a poor indicator of the accuracy of deep nuclei segmentation. As automatic segmentation methods continue to evolve, efficient and reliable QC methods will be necessary to support safe and effective integration into clinical workflows.
- Subjects :
- Surgery
Neurology (clinical)
Subjects
Details
- ISSN :
- 14230372 and 10116125
- Volume :
- 101
- Database :
- OpenAIRE
- Journal :
- Stereotactic and Functional Neurosurgery
- Accession number :
- edsair.doi...........b4da84ab8a2f64fed10c703720f691b3