Back to Search
Start Over
New insights into multi-shape memory behaviours and liquid crystalline properties of supramolecular polyurethane complexes based on pyridine-containing polyurethane and 4-octyldecyloxybenzoic acid
- Source :
- Journal of Materials Chemistry A. 3:19525-19538
- Publication Year :
- 2015
- Publisher :
- Royal Society of Chemistry (RSC), 2015.
-
Abstract
- Both liquid crystalline polymers and shape memory polymers are attractive to researchers. This paper describes the development of a supramolecular liquid crystalline complex exhibiting a multi-shape memory effect and liquid crystalline properties. 4-n-Octyldecyloxybenzoic acid (OOBA) is connected to a pyridine-containing polyurethane (PySMPU), forming a new PySMPU/OOBA complex. The results of this study demonstrate that the complex maintains the intrinsic crystallization and liquid-crystalline properties of OOBA and combines the shape memory effects of PySMPUs. Shape memory investigations demonstrate that the PySMPU/OOBA complexes have a good multi-shape memory effect, exhibiting triple- and quadruple-shape memory behaviours. For the triple-shape memory behaviours, the strain fixity at the first stage is lower than that at the second stage, while the strain recovery at the first stage is higher than that at the second stage. Overall, increasing the OOBA content improves the strain fixity but reduces the strain recovery due to the lubrication of the OOBA long chains. The successful combination of the liquid crystalline properties and multi-shape memory effect makes the PySMPU/OOBA complexes potentially applicable in smart optical devices, smart electronic devices and smart sensors.
- Subjects :
- chemistry.chemical_classification
Materials science
Renewable Energy, Sustainability and the Environment
Supramolecular chemistry
General Chemistry
Polymer
Shape-memory alloy
law.invention
chemistry.chemical_compound
Shape-memory polymer
chemistry
Chemical engineering
law
Pyridine
Lubrication
General Materials Science
Crystallization
Composite material
Polyurethane
Subjects
Details
- ISSN :
- 20507496 and 20507488
- Volume :
- 3
- Database :
- OpenAIRE
- Journal :
- Journal of Materials Chemistry A
- Accession number :
- edsair.doi...........b4d6d970084f0257386aaa5429e0eb83