Back to Search Start Over

Transcriptome Analysis of Intestinal Dysfunction in Newborn Piglets with Intrauterine Growth Restriction and Improve their Performance by Dimethylglycine Sodium Salt Supplementation after Weaning

Authors :
Qiming Li
Kaiwen Bai
Jingfei Zhang
Luyi Jiang
Lili Zhang
Tian Wang
Publication Year :
2021
Publisher :
Research Square Platform LLC, 2021.

Abstract

Background Few studies are available on the mechanism of intestinal dysfunction in newborn piglets with intrauterine growth restriction (IUGR). This work aimed to study the mechanism of jejunum dysfunction in IUGR newborn piglets through RNA-seq and improve their performance by dimethylglycine sodium salt (DMG-Na) supplementation after weaning. Methods In total, 13 normal birth weight (NBW) newborn piglets and 23 IUGR newborn piglets were obtained. Among them, 3 NBW and 3 IUGR newborn piglets were selected and stunned by electric shock after birth without suckling and collected the jejunum samples for RNA-sEq. After weaning at 21 days, they were randomly assigned to 3 groups (n = 10): NBW weaned piglets fed with common basal diets (N); IUGR weaned piglets fed with common basal diets (I); IUGR weaned piglets fed with common basal diets plus 0.1% DMG-Na (ID). All piglets are slaughtered at 49 days of age to collect serum and jejunum samples. Results The hub genes, including ATP8, C11orf86, CDKN1C, DDX58. HPX, INHBB, LECT2, ND1, NFIX, PRDM5, PSD3, SCD, and ZNF770, were found from the data analyzed by RNA-seq and WGCNA. Interestingly, we found ATP8 was the most significantly changed gene, which was crucial in maintaining mitochondrial function. After weaning, the growth performance of ID group was improved (P P P

Details

Database :
OpenAIRE
Accession number :
edsair.doi...........b4647acab66498fb7d16c6e191771476