Back to Search Start Over

Multi-Dimensional Computational Combustion of Highly Dilute, Premixed Spark-Ignited Opposed-Piston Gasoline Engine Using Direct Chemistry With a New Primary Reference Fuel Mechanism

Authors :
Daniel Probst
Sumilan Banerjee
Sameera Wijeyakulasuriya
Charles E. A. Finney
Michael A. Willcox
K. Dean Edwards
Clayton Naber
Anshul Mittal
Source :
Volume 2: Emissions Control Systems; Instrumentation, Controls, and Hybrids; Numerical Simulation; Engine Design and Mechanical Development.
Publication Year :
2017
Publisher :
American Society of Mechanical Engineers, 2017.

Abstract

This work presents a modeling approach for multidimensional combustion simulations of a highly dilute opposed-piston spark-ignited gasoline engine. Detailed chemical kinetics is used to model combustion with no sub-grid correction for reaction rates based on the turbulent fluctuations of temperature and species mass fractions. Turbulence is modeled using RNG k-ε model and the RANS-length scales resolution is done efficiently by the use of automatic mesh refinement when and where the flow parameter curvature (2nd derivative) is large. The laminar flame is thickened by the RANS viscosity and a constant turbulent Schmidt (Sc) number and a refined mesh (sufficient to resolve the thickened turbulent flame) is used to get accurate predictions of turbulent flame speeds. An accurate chemical kinetics mechanism is required to model flame kinetics and fuel burn rates under the conditions of interest. For practical computational fluid dynamics applications, use of large detailed chemistry mechanisms with 1000s of species is both costly as well as memory intensive. For this reason, skeletal mechanisms with a lower number of species (typically ∼100) reduced under specific operating conditions are often used. In this work, a new primary reference fuel chemical mechanism is developed to better correlate with the laminar flame speed data, relevant for highly dilute engine conditions. Simulations are carried out in a dilute gasoline engine with opposed piston architecture, and results are presented here across various dilution conditions.

Details

Database :
OpenAIRE
Journal :
Volume 2: Emissions Control Systems; Instrumentation, Controls, and Hybrids; Numerical Simulation; Engine Design and Mechanical Development
Accession number :
edsair.doi...........b40327792433743910bd0164ffc2d3c6
Full Text :
https://doi.org/10.1115/icef2017-3618