Back to Search Start Over

The Human FSGS-Causing ANLN R431C Mutation Induces Dysregulated PI3K/AKT/mTOR/Rac1 Signaling in Podocytes

Authors :
Robert F. Spurney
Rasheed Gbadegesin
Kamal Khan
Brandon M Lane
Megan Chryst-Stangl
Gentzon Hall
Guanghong Wu
Igor Pediaditakis
Maria E Kovalik
Erica E. Davis
Jianqiu Xiao
Liming Wang
Source :
Journal of the American Society of Nephrology. 29:2110-2122
Publication Year :
2018
Publisher :
Ovid Technologies (Wolters Kluwer Health), 2018.

Abstract

Background We previously reported that mutations in the anillin ( ANLN ) gene cause familial forms of FSGS. ANLN is an F-actin binding protein that modulates podocyte cell motility and interacts with the phosphoinositide 3-kinase (PI3K) pathway through the slit diaphragm adaptor protein CD2-associated protein (CD2AP). However, it is unclear how the ANLN mutations cause the FSGS phenotype. We hypothesized that the R431C mutation exerts its pathogenic effects by uncoupling ANLN from CD2AP. Methods We conducted in vivo complementation assays in zebrafish to determine the effect of the previously identified missense ANLN variants, ANLN R431C and ANLN G618C during development. We also performed in vitro functional assays using human podocyte cell lines stably expressing wild-type ANLN ( ANLN WT ) or ANLN R431C . Results Experiments in anln -deficient zebrafish embryos showed a loss-of-function effect for each ANLN variant. In human podocyte lines, expression of ANLN R431C increased cell migration, proliferation, and apoptosis. Biochemical characterization of ANLN R431C -expressing podocytes revealed hyperactivation of the PI3K/AKT/mTOR/p70S6K/Rac1 signaling axis and activation of mTOR-driven endoplasmic reticulum stress in ANLN R431C -expressing podocytes. Inhibition of mTOR, GSK-3 β , Rac1, or calcineurin ameliorated the effects of ANLN R431C . Additionally, inhibition of the calcineurin/NFAT pathway reduced the expression of endogenous ANLN and mTOR. Conclusions The ANLN R431C mutation causes multiple derangements in podocyte function through hyperactivation of PI3K/AKT/mTOR/p70S6K/Rac1 signaling. Our findings suggest that the benefits of calcineurin inhibition in FSGS may be due, in part, to the suppression of ANLN and mTOR. Moreover, these studies illustrate that rational therapeutic targets for familial FSGS can be identified through biochemical characterization of dysregulated podocyte phenotypes.

Details

ISSN :
15333450 and 10466673
Volume :
29
Database :
OpenAIRE
Journal :
Journal of the American Society of Nephrology
Accession number :
edsair.doi...........b3f53612c72ebc787f7d214235fbf3d9
Full Text :
https://doi.org/10.1681/asn.2017121338