Back to Search Start Over

Fatigue crack growth of 42CrMo4 and 41Cr4 steels under different heat treatment conditions

Authors :
Abílio M.P. De Jesus
Rui Calçada
Grzegorz Lesiuk
José A.F.O. Correia
Monika Duda
Source :
International Journal of Structural Integrity. 9:326-336
Publication Year :
2018
Publisher :
Emerald, 2018.

Abstract

Purpose For nowadays construction purposes, it is necessary to define the life cycle of elements with defects. As steels 42CrMo4 and 41Cr4 are typical materials used for elements working under fatigue loading conditions, it is worth to know how they will behave after different heat treatment. Additionally, typical mechanical properties of material (hardness, tensile strength, etc.) are not defining material’s fatigue resistance. Therefore, it is worth to compare, except mechanical properties, microstructure of the samples after heat treatment as well. The paper aims to discuss these issues. Design/methodology/approach Samples of normalized 42CrMo4 (and 41Cr4) steel were heat treated under three different conditions. All heat treatments were designed in order to change microstructural properties of the material. Fatigue tests were carried out according to ASTM E647-15 standard using compact tension specimens. Later on, based on obtained results, coefficients C and m of Paris’ Law for all specimens were estimated. Similar procedure was performed for 41Cr4 steel after quenching and tempering in different temperatures. Findings The influence of heat treatment on the fatigue crack growth rates (42CrMo4, 41Cr4 steel) has been confirmed. The higher fatigue crack growth rates were observed for lower tempering temperatures. Originality/value This study is associated with influence of microstructural properties of the material on its’ fatigue fracture. The kinetic fatigue fracture diagrams have been constructed. For each type of material (and its heat treatment), the Paris law constants were determined.

Details

ISSN :
17579864
Volume :
9
Database :
OpenAIRE
Journal :
International Journal of Structural Integrity
Accession number :
edsair.doi...........b37f2faae905c9617d657e2c4352e544