Back to Search Start Over

Interactions between snow cover and evaporation lead to higher sensitivity of streamflow to temperature

Authors :
Tirthankar Roy
Scott W. Tyler
Guo Yue Niu
Peter Troch
Antonio Alves Meira Neto
Source :
Communications Earth & Environment. 1
Publication Year :
2020
Publisher :
Springer Science and Business Media LLC, 2020.

Abstract

Estimates of potential evaporation often neglect the effects of snow cover on evaporation process. Here, we present a definition of potential evaporation that explicitly accounts for landscapes that are partially covered by snow. We show that, in the presence of snowpack, our evaporation estimates differ from conventional methods that assume evaporation from a free water surface. Specifically, we find that conventional methods overestimate potential evaporation as well as aridity, taken as the ratio of atmospheric water demand to supply, in landscapes where snowfall is significant. With dwindling snow-cover, actual aridity increases, which could explain the reduction in streamflow with decreasing snowfall. We suggest that streamflow, and hence water availability, is more sensitive to temperature changes in colder than in warmer regions. Colder, snow-dominated regions are more likely to experience greater changes in water availability with warming, suggests an analysis that explicitly includes snow cover in potential evaporation estimates.

Details

ISSN :
26624435
Volume :
1
Database :
OpenAIRE
Journal :
Communications Earth & Environment
Accession number :
edsair.doi...........b33257cd6b3bb5ed32f72b21918ad529
Full Text :
https://doi.org/10.1038/s43247-020-00056-9